

Spring Term 2019

Basic Information:

Course Title:	Analysis of Algorithms	Course Code	IT-0467
Program:	BBIT- IT Specialization	Credit Hours:	3
Total Sessions:	Thirty Two, 32(max)	Pre Requisite:	Data Structures & Algorithms

Course Description:

Algorithms are precisely stated, general problem solving methods suitable for computer implementation. Data Structures are methods of organizing data involved in computation. Algorithms and data structures are central objects of study in computer science. Once appropriate algorithms and data structures are chosen, all that remains in most computer programs is routine coding. Moreover, algorithms and data structures go hand in hand: neither can be studied fruitfully without knowledge of the other. The course studies techniques for designing and analyzing algorithms and data structures. The course concentrates on techniques for evaluating the performance of algorithms. The relationship between inductive proof and creative evolution of algorithms is investigated.

Learning Outcomes:

The design and analysis of algorithms is the core subject matter of Computer Science. Given a problem, we want to

- \checkmark find an algorithm to solve the problem,
- \checkmark prove that the algorithm solves the problem correctly,
- ✓ prove that we cannot solve the problem any faster, and
- ✓ implement the algorithm.

Designing an algorithm for a computational problem involves knowledge of the problem domain, a thorough knowledge of the data structures that are available and suitable and no small measure of creativity. This course concentrates on the above problems, studying useful algorithmic design techniques, and methods for analyzing algorithms.

Teaching Learning Methodology:

The formal teaching component of this course consists of: active student participation in and contribution to all forms of teaching and learning i.e. lectures, discussions, research assignments and projects. Lectures will be twice a week of 90 min each.

Wk.	Lecture Topic	Activity
1.	Introduction to Algorithms	
2.	Standard Notations and Formulae, Time & Space Complexity	A-01
3.	Recursive Algorithms, Recursion Trees and Time Expression	Quiz 01
4.	Growth Functions, Complexity Methods	A-02
5.	Non-Linear Sorting	
6.	Linear Time Sorting, Hash Tables	
7.	Hash Function, Open Hashing	A-03, Quiz 02
8.	Dynamic Programing; Assembly Line	
9.	Mid Term Examination	
10.	Matrix Chain Multiplication, Longest Common Subsequence	
11.	Greedy Algorithms, Huffman Coding, Task Scheduling Problem	A-04
12.	Graph, Introduction and Representation	A-05, Quiz 03,
13.	Breadth First Search, Depth First Search	A06
14.	Minimum Spanning Tree, Kruskal Algorithm, Prims Algorithms	A-08, Quiz 04
15.	Single Source Shortest	
16.	Final Term Examination	

Weekly Term Plan

Institute Of Business & Information Technology University of the Punjab _{Quaid-e-Azam Campus, Lahore}

Spring Term 2019

No	Торіс	Ch.	Page	
1.	Introduction to Algorithms	01	05	
2.	Standard Notations and Formulae, Time & Space Complexity			
3.	Iterative Algorithms and Complexity Expression			
4.	Recursive Algorithms, Recursion Trees and Time Expression			
5.	Growth Functions, Asymptotic Notations	03	42	
6.	Substitution Method	04	63	
7.	Recursion Tree Method	04	67	
8.	Master Theorem Method	04	73	
9.	Non-Linear Sorting; Bubble Sort, Selection Sort, Insertion Sort	02	05	
10.	Merge Sort	02	29	
11.	Quick Sort	06	145	
12.	Heap Sort	06	128	
13.	Linear Time Sorting; Counting Sort, Radix Sort, Bucket Sort	08	168, 170, 174	
14.	Hash Tables; Direct Hash Tables	11	222	
15.	Hash with Chaining, Hash Functions (Division, Multiplication)	11	224, 229	
16.	Open Addressing, Linear and Quadratic Probing	11	237, 239, 240	
17.	Dynamic Programing; Assembly Line	15	324	
18.	Matrix Chain Multiplication	15	331	
19.	Longest Common Subsequence	15	350	
20.	Greedy Algorithms; Elements of Greedy Algorithm	16	370,379	
21.	Huffman Coding	16	385	
22.	Task Scheduling Problem	16	399	
23.	Graph, Introduction and Representation	22	528	
24.	Breadth First Search, Depth First Search	22	531, 540	
25.	Topological Sort	22	549	
26.	Strongly Connected Components	22	552	
27.	Minimum Spanning Tree	23	562	
28.	Kruskal Algorithm, Prims Algorithms	24	568, 570	
29.	Single Source Shortest Path	24	580	
30.	Bellman Ford Algorithm	24	588	
31.	J1.Dijkastra's Algorithm24595			

Text & Recommended Readings		Tools			
1.	Introduction to the Algorithms Thomas H. Cormen 3 rd Edition Prentice Hall Publishers	1.	Microsoft Word f Headings Normal Text Header Footer	or Documentation Arial 11pt Bold Times New Roman 10pt Times New Roman 8pt	
2.	Computer Algorithms: Introduction to Design and Analysis' Sara Baase Addison Wesley, 1988	2.	Paragraph Page Margins Microsoft Visio 2	Single Line Spacing First Line Indent 1.0 cm 2 cm from each side 007	

Grading Policy:

Final Grade for this course will be the cumulated result of the following term work with relevant participation according to the quoted percentage.

Sessional	25%	Mid Term	35%
Assignments	10%	Final Term	40%
Quizzes	10%		
Presentation	05%		

Spring Term 2019

Contact Hour

Lectures			Counseling Hour			
Day	Start	Finish	Venue	Day	Start	Finish
Tuesday	0815Hr	0945Hr	Aud-07	Wednesday	1000hr	1100hr
Thursday	0815Hr	0945Hr	Aud-07	Wednesday	1200hr	1300hr

Grading System:

Letter Grade	Grade Point	Num. Equivalence
А	4.00	85 - 100 %
A-	3.70	80 - 84 %
B+	3.30	75 - 79%
В	3.00	70 - 74 %
B-	2.70	65 - 69 %
C+	2.30	61 - 64 %
С	2.00	58 - 60 %
C-	1.70	55 - 57 %
D	1.00	50 - 54 %
F	0.00	Below 50 %
Ι	Incomplete	*
W	Withdraw	*

Norms to Course:

- ✓ Submission Date and Time for the term instruments is always UN-EXTENDABLE.
- ✓ Re-sit in Mid & Final Term will cause you a loss of 2 & 3 grade marks respectively. (PU Policy)
- ✓ 7 Absentees in class will be result in forced withdrawal. (PU Policy)
- \checkmark Printed Document shall be in accordance to the given format.
- ✓ After the submission date, No excuse will be entertained.
- ✓ Assignment is acceptable only in its *Entirety*.
- ✓ No make up for any assignment and quiz.
- ✓ Copied & Shared work will score Zero.
- ✓ Assignments are Individual.