

Spring Term

Basic Information:

Title:	Digital Logic Design	Code	IT-162
Program:	BBIT	Credit Hours:	Three (03)
Sessions:	30 Classes + Mid Term + Final Term	Pre-Requisite:	IT 160

Course Description:

This course covers the design of integrated circuits for the digital systems. Emphasis is placed on theoretical concepts and systematic techniques of synthesis which can be applied to realistic digital systems design.

Learning Outcomes:

After the completion of this course, it is expected that students who will involve themselves in the knowledge base working of the course will be capable to

- 1. Design logic level models, including Boolean algebra, Arithmetic Circuits, State Machines and ALU.
- 2. Design sequential circuits, including latches, flip-flops, registers and counters.
- 3. Understand the role of time, frequency and interrupts in digital computers.
- 4. Understand memory, including flip flops, RAM and ROM.
- 5. Understand and design of control, data and address bus along with their communication with ALU, memory and I/O devices.

Teaching Learning Methodology:

The formal teaching component of this course consists of active student participation in and contribution to all forms of teaching and learning i.e. lectures, discussions, research assignments and projects. Lectures will be twice a week of 90 min each.

Group Configurations:

One of the objectives of this course is to encourage and facilitate teamwork. Class will have to make a group of <u>two</u> for projects and research assignments. It is recommended that student will form their own groups. As a general guideline, your group should have members with diverse skill sets including people who are proficient or have aptitude for different subject areas.

Wk	Lecture Topic	Sessional Activities			
01	Digital Systems and Digital Numbers				
02	Boolean Algebra and Circuit Design	Assignment 1 (a)			
03	Standard and Canonical Forms	Quiz 1			
04	Gate-level Minimization, MSI Logic Circuits	Assignment 1 (b)			
05	Sequential Circuits	Quiz 2			
06	Registers	Assignment 2 (Verilog HDL)			
07	ALU Design	Assignment 3 ((a & b) (Design + VHDL)			
08	Mid Term Examination				
09	Synthesizable HDL Models of Sequential Circuits				
10	Counters	Term Project Proposal			
11	RAM Architecture, RAM Read/Write Operations	Quiz 3			
12	ROM Architecture, ROM Operations	Term Project Deliverable 1			
13	Register Transfer Level (RTL), RTL in HDL	Assignment 4 + Term Project Deliverable 2			
14	Algorithmic State Machines (ASM)	<i>Quiz 4</i> <i>Term Project Final Evaluation</i>			
15	Synchronizing Data Bus, Control Bus and Address Bus operations with ALU and Memory	Finalizing Sessional Activities			
16	Final Term Examination				

Weekly Term Plan

Sprin	g Term					
Topics in Detail						
Digital Systems and Binary Numbers Number Systems and Conversions Complements Describing Logic Circuits Basic Logic Gates Boolean Theorems Boolean Theorems Boolean Functions Circuits design for Boolean functions Simplification of Boolean functions using Boolean Theorems Introduction to Verilog HDL Gate-level Minimization Standard and Canonical forms Sum of products and sum of minterms Product of sums and product of maxterms Simplification of Boolean Expressions using K-Map NAND and NOR implementations MSI Logic Circuits Decoders Encoders Data Selectors Data Distributors Synchronous Sequential Circuits Sequential Circuits Latches and Flip flops Analysis of clocked sequential circuits Registers Data Storage and Transfer: Registers Serial Data Transfer: Shift Registers	Arithmetic Logic Unit Design Arithmetic Circuits Analysis and Design procedures of Combinational Circuits Binary Adder-Subtractor Binary Multiplier Magnitude Comparator Arithmetic Logic Unit ALU integrated Circuits Synthesizable HDL Models of Sequential Circuits Counters Ripple counters Parallel Counters HDL for Registers and Counters Memory Unit Random Access Memory (RAM) Architecture RAM Read/Write Operations Memory Decoding Read-only Memory Register Transfer Level (RTL) in HDL Algorithmic State Machines (ASM) Mealy FSM Moore FSM Synchronizing Data Bus, Control Bus and Address Bus operations with ALU and Memory					

Text & Recommended Readings	Assignment Specification			
 Digital Design 4th Edition	 Microsoft Word for Documentation			
by Morris Mano	Headings Arial 11pt Bold			
Digital Systems: Principles and Applications	Normal Text Times New Roman 10pt			
by Ronald J. Tocci	Header Footer Times New Roman 8pt			
10 th Edition Fundamentals of Digital Logic with VHDL	Paragraph Single Line Spacing			
design 3 rd Edition	First Line Indent 1.0 cm			
by Stephen Brown	Page Margins 2 cm from each side Program Files for VHDL in .zip folder			

Spring Term

Grading Policy:

Final Grade for this course will be the cumulated result of the following term work with relevant participation according to the quoted percentage.

Sessional	25%		Mid Term	35%	Final Term	40%
Assignments	10 %		Mid Term Exam	25%	Final Exam	30%
Quizzes	10%		Major Report/Work	10%	Case Study/ Project/	10%
Presentations	05%				Term Paper	

Remember subdivision of Mid Term and Final Term Examination should be done only in extreme cases of very essential and major Grading Instruments.

Dishonest Practices & Plagiarism

Any student found responsible for dishonest practice/cheating (e.g. copying the work of others, use of unauthorized material in Grading Instruments) in relation to any piece of Grading Instrument will face penalties like deduction of marks, grade 'F' in the course, or in extreme cases, suspension and rustication from IBIT.

For details consult PU Plagiarism Policy at <u>http://pu.edu.pk/dpcc/downloads/Plagiarism-Policy.pdf</u>

Grading System:

Letter Grade	Grade Point	Num Equivalence		
A	4.00	85 - 100 %		
A-	3.70	80 - 84 %		
B+	3.30	75 – 79%		
В	3.00	70 - 74 %		
B-	2.70	65 - 69 %		
C+	ຂ.30	61 - 64 %		
С	ຂ.00	58 - 60 %		
C-	1.70	55 - 57 %		
D	1.00	50 - 54 %		
F	0.00	Below 50 %		
I	Incomplete	*		
W	Withdraw	*		

Norms to Course:

- ✓ Submission Date and Time for the term instruments is always <u>Un-Extendable</u>.
- ✓ 5 Absentees in class will result in forced withdrawal. (PU Policy)
- Re-sit in Mid and Final Term will cause you a loss of 2 and 3 grade marks respectively. (PU Policy)
- ✓ This is your responsibility to keep track of your position in class evaluation units.
- ✓ After the submission date, NO excuse will be entertained.
- ✓ Keep a copy of all submitted Grading Instruments.
- ✓ Assignment is acceptable only in its Entirety.
- ✓ No make up for any assignment and quiz.
- ✓ Copied & Shared work will score Zero.
- ✓ Assignments are Individual.

For the Spring Term