

Spring Term

Basic Information:

Title: Operating System Concepts	Code IT 366
Program: BBIT	Credit Hours: Three (03)
Sessions: 30 Classes + Mid Term + Final Term	Pre-Requisite: IT 367

Course Description:

Operating systems are central to computing activities. An operating system is a program that acts as an intermediary between a user of a computer and the computer hardware. Two primary aims of an operating systems are to manage resources (e.g. CPU time, memory) and to control users and software. Operating system design goals are often contradictory and vary depending of user, software, and hardware criteria. This course describes the fundamental concepts behind operating systems, and examines the ways that design goals can be achieved

Learning Outcomes:

After the completion of this course, it is expected that students who will involve themselves in the knowledge base working of the course will be capable to

- 1. Describe and explain the concepts, structure and design of operating systems
- 2. Describe the impact of operating system design on application system design and performance
- 3. Demonstrate competency in recognizing and using operating system design and performance
- 4. Demonstrate competency in recognizing and using operating system features.
- 5. have a working knowledge of systems-level programming using the UNIX environment

Teaching Learning Methodology:

The formal teaching component of this course consists of active student participation in and contribution to all forms of teaching and learning i.e. lectures, discussions, research assignments and projects. Lectures will be twice a week of 90 min each.

Group Configurations:

One of the objectives of this course is to encourage and facilitate teamwork. Class will have to make a group of four for projects and research assignments. It is recommended that student will form their own groups. As a general guideline, your group should have members with diverse skill sets including people who are proficient or have aptitude for different subject areas.

Wk	Торіс	Activity				
01	Introduction and Overview					
02	Process Concept & Management					
03	CPU Scheduling					
04	Inter Process Communication					
05	05 Process Synchronization					
06	Process Synchronization					
07	Deadlock Handling					
08	Mid Term Examination					
09	Memory Management I					
10	Memory Management II					
11	Virtual Memory Management					
12	Secondary Storage Management					
13	File Systems					
14	Device Management					
15	Security & Protection					
16	Case Study; Windows					
17	Case Study; Linux					
18	Final Term Examination					

Weekly Term Plan

Spring Term

Topics in Detail

Introduction

Definition Types of Operating System Batched Systems Parallel Systems Real Time Systems Distributed Systems Time Sharing Systems Multiprogramming Systems

Components of Operating System

Process Management Memory Management Storage Management File System I/O Systems Virtual Machine

Process Management

Concept of Process Operations on Process Independent Process Cooperative Process Attributes of Cooperative Process Reasons to Support Cooperative Process Inter Process Communication Threads & Multithreading Distributed Process Management

CPU Scheduling

Scheduling Criteria Preemptive Non-Preemptive Scheduling Schedulers Long Term Scheduler Medium Term Scheduler Short Tem Scheduler Scheduling Algorithm First Come First Serve Shortest Job First Round Robin Multilevel Queue Scheduling Highest Response Ratio Performance Analysis Deterministic Modeling Queuing Analysis of Algorithms

Text & Recommended Readings

- Operating System Concepts Abraham Silberschatz Wiley & Sons, 7th Edition, 0-471-69466-5
- 2. Operating Systems William Stalling Prentice Hall, 3rd Edition, 0138874077
- 3. Practical Guide to Red Hat Linux 8.0 Mark G. Sobell Addison-Wesley, 0201703130

Process Synchronization

Critical Section Problem Solution Requirements Dekker's & Peterson Algorithm Hardware Solution Semaphores Dinning Philosopher Problem

Deadlock Handling

Introduction Causes of Deadlock Requirements of Solution Solutions Deadlock Prevention Deadlock Avoidance Deadlock Detection

Memory Management

Memory Address Space Contiguous Allocation Swapping Single Partition Memory Partitioning Non Contiguous Allocation Paging Segmentation Segmentation with Paging Virtual Memory Dynamic Linking & Loading Overlavs **Demand Paging Page Replacement** Page Replacement Algorithm Thrashing

File System

File Concept Access Method File System Structure Directory Structure & Implementation Allocation Methods Contiguous Allocation Linked Allocation Index Allocation Free Space Management

Tools

- 1. Red Hat Linux
- 2. Visio 5.0 Professional
- Microsoft Word for Documentation
 Headings
 Arial 11pt Bold
 Normal Text
 Times New Roman 10pt
 Header Footer
 Times New Roman 6pt
 Paragraph
 Single Line Spacing
 First Line Indent 1.0 cm
 Page Margins
 2 cm from each side
 Microsoft Paragraph
- 4. Microsoft PowerPoint for Presentation

Quaid-e-Azam Campus, Lahore

Spring Term

Grading Policy:

Final Grade for this course will be the cumulated result of the following term work with relevant participation according to the quoted percentage.

Sessional	25%	Mid Term	35%	Final Term	40%
Assignments	10 %	Mid Term Exam	25%	Final Exam	30%
Quizzes	10%	Major Report/Work	10%	Case Study/ Project/	10%
Presentations	05%			Term Paper	

Remember subdivision of Mid Term and Final Term Examination should be done only in extreme cases of very essential and major Grading Instruments.

Dishonest Practices & Plagiarism

Any student found responsible for dishonest practice/cheating (e.g. copying the work of others, use of unauthorized material in Grading Instruments) in relation to any piece of Grading Instrument will face penalties like deduction of marks, grade 'F' in the course, or in extreme cases, suspension and rustication from IBIT. For details consult Plagiarism Policy of PU at http://pu.edu.pk/dpcc/downloads/Plagiarism-Policy.pdf

Grading System:

Letter Grade	Grade Point	Num Equivalence
А	4.00	85 - 100 %
A-	3.70	80 - 84 %
B+	3.30	75 - 79%
В	3.00	70 - 74 %
B-	2.70	65 - 69 %
C+	2.30	61 - 64 %
С	2.00	58 - 60 %
C-	1.70	55 - 57 %
D	1.00	50-54 %
F	0.00	Below 50 %
Ι	Incomplete	*
W	Withdraw	*

Norms to Course:

- ✓ Submission Date and Time for the term instruments is always <u>Un-Extendable</u>.
- ✓ 5 Absentees in class will result in forced withdrawal. (PU Policy)
- ✓ Re-sit in Mid and Final Term will cause you a loss of 2 and 3 grade marks respectively. (PU Policy)
- ✓ This is your responsibility to keep track of your position in class evaluation units.
- ✓ After the submission date, NO excuse will be entertained.
- ✓ Keep a copy of all submitted Grading Instruments.
- ✓ Assignment is acceptable only in its Entirety.
- ✓ No make up for any assignment and quiz.
- ✓ Copied & Shared work will score Zero.
- ✓ Assignments are Individual.

Good Luck

For the Spring Term