

Spring Term

Basic Information:

Title:	Computer Architecture	Code	IT 463
Program:	BBIT (Major in Information Technology)	Credit Hours:	Three (03)
Sessions:	30 Classes + Mid Term + Final Term	Pre-Requisite:	IT 162

Course Description:

The course of computer architecture is concerned with the structure and behavior of the various functional modules of computer and how the interact to provide the processing needs of the user. To write high-performance computer programs, it is essential to know the underlying hardware on which those programs will execute. Major part of this course will focus on architectures and memory systems. Today's computer hardware sector faces significant challenges. The multi-core revolution is at the heart of these challenges. The shift from single processor models to multi-core design needs knowledgeable hardware and software designers about a variety of problems including hardware in parallel computing.

Learning Outcomes:

After the completion of this course, it is expected that students who will involve themselves in the knowledge base working of the course will be capable to

- 1. Understand the design of a pipelined CPU and cache hierarchy
- 2. Analyze and evaluate CPU and memory hierarchy performance
- 3. Understand hardware design of multiprocessors including cache coherence and synchronization
- 4. Experience with a complex simulation tool to study various microarchitectural features.

Teaching Learning Methodology:

The formal teaching component of this course consists of active student participation in and contribution to all forms of teaching and learning i.e. lectures, discussions, research assignments and projects. Lectures will be twice a week of 90 min each.

Group Configurations:

One of the objectives of this course is to encourage and facilitate teamwork. Class will have to make a group of four for projects and research assignments. It is recommended that student will form their own groups. As a general guideline, your group should have members with diverse skill sets including people who are proficient or have aptitude for different subject areas.

Wk	Lecture Topic	Activity
01	Computer Organization Basics	
02	RTL, Microoperations, Design of Arithmetic Microoperations	A01
03	Logic Microoperations, Design of Buses	Quiz 1
04	Basic Computer Organization and Design	
05	Timing and Control, Instruction Cycle	A02
06	Register Reference Instructions,	Quiz 2
07	Design Of ALU, General Register Organization	
08	Mid Term Examination	
09	RISC And CISC Architectures, Introduction to Pipelining	
10	Arithmetic Pipeline, Instruction Pipeline, Hazards, Handling of Hazards	
11	Dynamic Branch Prediction	A03 & Quiz 3
12	Limitations to Instruction Level Parallelism (ILP) and Thread Level Parallelism	
13	Simultaneous Multi-Threading (SMT)	A04
14	Memory Hierarchy, Main Memory, Associative Memory	Quiz 4
15	Cache Memory and Mapping Techniques	
16	Final Term Examination	

Weekly Term Plan

Spring Term

Topics in Detail

Introduction

Review of Logic Design Computer Organization Basics

Basic Computer Organization and Design

Instruction Codes Timing and Control Instruction Cycle Memory Reference Instructions Input-Output and Interrupt Design of Basic Computer Design of Accumulator Logic

Register Transfer

Register Transfer Language Three State Bus Buffers Memory Transfer

Microoperations

Design of Arithmetic Microoperations Binary Adder Binary Adder-Subtractor Binary Incrementor Arithmetic Circuit Logic Microoperations Hardware Implementation Shift Microoperations Hardware Implementation Arithmetic Logic Shift Unit

Central Processing Unit

Register Organization Stack Organization Instructions Format Addressing Modes Data Transfer and Manipulation **Program** Control RISC **Pipeline and Vector Processing** Parallel Processing Pipelining Arithmetic Pipelining Instruction Pipelining **RISC** Pipeline **Pipelining Hazards** Handling Hazards **Branch Prediction** Instruction Level Parallelism **Thread Level Parallelism** Simultaneous Multi-Threading **Memory Organization** Main Memory Auxiliary Memory Associative Memory Virtual Memory

Cache Memory Memory Mapping Techniques Memory Management Hardware

Text & Recommended Readings	Assignment Specification			
 A. Computer System Architecture by Morris Mano B. Computer Organization and Design by Hennessy and Patterson 	1.Microsoft Word for Documentation HeadingsHeadingsArial 11pt Bold Normal TextNormal TextTimes New Roman 10pt Header FooterHeader FooterTimes New Roman 8pt Single Line Spacing First Line Indent 1.0 cm Page Margins2 cm from each side			

Quaid-e-Azam Campus, Lahore

Spring Term

Grading Policy:

Final Grade for this course will be the cumulated result of the following term work with relevant participation according to the quoted percentage.

Sessional	25%		Mid Term	35%		Final Term	40%
Assignments	10 %		Mid Term Exam	25%		Final Exam	30%
Quizzes	10%		Major Report/Work	10%		Case Study/ Project/	10%
Presentations	05%					Term Paper	
		C 1 4.		п ·	. •	1 111 1 1	,

Remember subdivision of Mid Term and Final Term Examination should be done only in extreme cases of very essential and major Grading Instruments.

Dishonest Practices & Plagiarism

Any student found responsible for dishonest practice/cheating (e.g. copying the work of others, use of unauthorized material in Grading Instruments) in relation to any piece of Grading Instrument will face penalties like deduction of marks, grade 'F' in the course, or in extreme cases, suspension and rustication from IBIT. For details consult Plagiarism Policy of PU at http://pu.edu.pk/dpcc/downloads/Plagiarism-Policy.pdf

Grading System:

Letter Grade	Grade Point	Num Equivalence
А	4.00	85 - 100 %
A-	3.70	80 - 84 %
B+	3.30	75 - 79%
В	3.00	70 - 74 %
B-	2.70	65 - 69 %
C+	2.30	61 - 64 %
С	2.00	58 - 60 %
C-	1.70	55 - 57 %
D	1.00	50 - 54 %
F	0.00	Below 50 %
Ι	Incomplete	*
W	Withdraw	*

Norms to Course:

- ✓ Submission Date and Time for the term instruments is always Un-Extendable
- ✓ 5 Absentees in class will result in forced withdrawal. (PU Policy)
- ✓ Re-sit in Mid and Final Term will cause you a loss of 2 and 3 grade marks respectively. (PU Policy)
- ✓ This is your responsibility to keep track of your position in class evaluation units.
- ✓ After the submission date, NO excuse will be entertained.
- ✓ Keep a copy of all submitted Grading Instruments.
- ✓ Assignment is acceptable only in its Entirety.
- ✓ No make up for any assignment and quiz.
- ✓ Copied & Shared work will score Zero.
- ✓ Assignments are Individual.

Good Luck

For the Spring Term